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Fh> try] and the 'orthogonality' of the Bessel func- 
tions to produce a Fourier-Bessel series for the 
noncentric reflections. Thus, the probability can be 
expressed as 

o o  

P(Ih) = Z amJo(JmI~/2/O'l), (A9) 
m = l  

where jm is the mth zero of Jo. The values of am can 
be determined using the orthogonality condition 
(Watson, 1942; see also Gradshteyn & Ryzhik, 1965, 
6.521) 

O" 1 

(1/2)trl2[J, (j,,,)]2 f Jo( Fx)Jo(Fjm/ °"1)F dF 
o 

=a(jm--XOrl) ,  

(A10) 

which gives 
N / e  

a,,, = trl2[Jl(jm)] -2 1--I Jo(ef~,jm/tr~) 
p . = l  

= o'?2[j~(jm)]-2exp- (ecr2/4tr~)j2m 
oo 

X Z K~(ejm/2°' ,)  2'' 
n=O 

(All)  

This series expansion is used to calculate the exact 
distributions for comparison in Figs. 1 and 4. At 
least 40 terms were used in any expansion. 

These series have importance when the central- 
limit-theorem approximation (i.e. the Wilson term) is 
inapplicable. For example, if the cell is considered to 
be made up of a small number of fragments with 
structure factors [F£I =fu(h, 0u), then the expansions 
(3) still hold for random fragments but the higher- 
order terms have more significance. Thus, a joint 
probability distribution of fragment orientations 0u 
can be calculated. 
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Abstract 

The coherent wave field, which is the ensemble aver- 
age of the solution of the wave equation, is studied. 
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The approach is similar to that used in the previous 
theory on extinction [Kato (1976). Acta Cryst. A32, 
453-457, 458-466]. Here it is extended to deal with 
general cases where the single average and the 
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18 THE STATISTICAL THEORY OF DYNAMICAL DIFFRACTION 

second-order correlation of lattice phase factors are 
mixed. The Laplace transforms of the coherent wave 
fields are derived first and integro-differential equa- 
tions (IDEs) are formulated for them. The latter are 
identical to the previous ones derived directly from 
the wave equation. A controversial problem of IDEs 
is explained by the interpretation of IDEs. 

1. Introduction 

The present author has studied statistical treatments 
of dynamical diffraction in distorted crystals for 
more than a decade. The underlying motivations for 
this work are described in previous papers and sum- 
marized in the introduction to the latest one (Kato, 
1991); they are not repeated here. 

This paper is intended to elucidate the mathemati- 
cal structure of the coherent wave field (CWF), 
which is the ensemble average of the wave field. 
First, we adopt a formal solution of the wave equa- 
tion of the Takagi-Taupin (T-T) type. Then, the 
average is taken over the lattice phase factors associ- 
ated with diffraction (kink) points of every optical 
path. Correlations higher than second order are neg- 
lected. Also, only the case of Laue geometry is 
considered. Within these limitations, no approxi- 
mations are assumed. 

The method is similar to that used in the theory on 
extinction (Kato, 1976a,b, hereinafter referred to as 
Ia and Ib, respectively). In fact, that work is the 
forerunner of the present theory. It is, here, however, 
generalized so as to deal with cases in which the 
average and the second-order correlations of phase 
factors are mixed. In such general cases, the Laplace 
transforms of CWFs are first derived and a couple of 
integro-differential equations (IDEs) are formulated 
for them. 

The present IDE is identical to that obtained in 
the previous papers (Kato, 1980a,b, hereinafter refer- 
red to as IIa and IIb, respectively). Also, the result 
for the Laplace transforms is similar to that recently 
obtained by Guigay & Chukhovskii (1992). Their 
approach, however, is different from the present one. 

As a preparation, the present approach and some 
notation are explained in §2. The rest of this paper is 
devoted to deriving CWFs step by step and arriving 
at IDEs. In these sections, the standard mathematics 
related to the Laplace transform (for example, Sned- 
don, 1972) are used extensively. In §6, the applica- 
bility of the present theory and a few different 
opinions from Guigay & Chukhovskii on the inter- 
pretation of IDEs are discussed. 

2. The outline of the theory and a glossary of notation 

Only important notations are listed, with a few 
comments, as details have been given in previous 
papers. [Ia, Ib, IIa, IIb and Kato (1991)]. 

Diffraction amplitudes: % and X_g, K 2 " - K g K _ g .  

(ela, b) 

Lattice phase: qS(r) = exp { -  2rri[g" u(r)]}. (P2) 

The position r is often denoted by the components 
(So,Sg) in the oblique coordinate axes along the O 
and G directions. 

Static Debye-Waller factor: E = (q~(r)). (P3) 

Correlation function: (q~q~*(z)) = (q~*q~(z)) (P4a) 

= E 2 + (1 - EZ)g(z). 

(P4b) 

The distance z represents either Zo or zg, which are 
measured along the O and G directions, respectively. 
g(z) is called the intrinsic correlation function. 

Let us consider the formal solution of the wave 
fields, Do and Og. As discussed in Ia, Ib, they can be 
written in the forms 

Do(so, Sg)-- ~(Sg)-~ E Z(iKg)fl)l(iK_g) 
r(1, oo) Rr 

X (~2 X . . .  X (iK_g)t~Zr , (P5a) 

Do(so, ss)= ~ ~(i%)qD~(ix_g)~2...~2r(i%)~2,+~, 
r(O, ~ ) Rr 

(PS6) 

where the suffix to • indicates the order of kink 
points in a zig-zag optical path and, symbolically, the 
position (Soi, sgt) of each kink. The symbol Y nr 
implies the total sum (integration) over possible 
paths, which are specified by all kink positions 
{So,Sgi}. This is further explained in ~3 and 4. 

The first term a(sg) in (P5a) is the O wave, which 
experiences no diffraction. The singular form is due 
to the assumption of a point source located at (0,0) 
and the characteristic nature of the hyperbolic differ- 
ential equation of the T-T type. 

Next, we consider CWFs, namely (Do(so,Sg)} and 
(Dg(so,Sg)). Notice that only the lattice phase factors 
are random variables. If correlations higher than 
second order are neglected, the sequence of the aver- 
aged phase factors consists of E [el (P3)] and [E 2 + 
(1 - E2)g(z)] [cf (P4b)]. However, the first term, E z, 
in the latter is nothing other than an independent 
average of the phase factors at two neighboring 
kinks. Therefore, after averaging, the sequence con- 
sists of E and (1 - EZ)g(z). The situation is illustrated 
in Fig. 1. The shadowed region is a sequence of 
(1 -EZ)g(z) and the narrow white column indicates 
the factor E. 

Fo Fg Fo Fg Fo Fg Fo Fg Fo 

1~-g Kg K-g Kg K-g l~g K-g Kg 

Fig. 1. A schematic diagram of the sequence of the averaged phase 
factors in the case of (Do(so, Sg)) (see {}2). 
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For fitting to the boundary condition of the wave, 
it is postulated that the first shadowed region con- 
sists of (1 - E2)g(Zg). That is, only the intrinsic corre- 
lation along the G direction is included. Such a 
region is called an O-type region. Notice that the 
input and output waves propagate in the O direction. 
Then, the amplitude factor of the subsequent white 
column must be (i%). Consequently, the next 
shadowed region is of the G type, consisting of only 
(1 -E2)g(Zo). Then, the next white column must be 
characterized by the amplitude factor (iX_g). The 
subsequent region must be of the O type and so on. 
Obviously, the final region must be of the O type for 
the O wave and of the G type for the G wave. In 
summary, the shadowed regions of the O and G 
types appear alternately and the amplitude factors 
(ire,) and (iK_g) appear in the same manner, with a 
fixed order. 

If the number of the intrinsic correlation functions 
includes zero in the shadowed regions, a continuous 
arrangement of E is automatically t/tken into 
account. Moreover, any mixed arrangement of 
(ilcgE), ( i K _ g E )  and K2(1-E2)g(z) that obeys the 
diffraction condition can be represented with this 
notation scheme. 

In the following sections, we calculate CWFs step 
by step. Except in the titles and unless ambiguity 
occurs, the adjective 'averaged' and the notation (> 
are omitted. 

3. The special averaged wave field, 
Fo(~,rl) and Fg(~,r/) 

In Fig. 2, the shadowed regions in Fig. 1 are shown 
in more detail. The size of the region is specified by ( 
and r/. The wave fields corresponding to the O- and 
G-type regions are denoted Fo((,rl) and Fg((,~7), 
respectively. We discuss mainly Fo(sC, rl) because the 
field Fg(~:,rl) is obtained in the same way. 

According to the present notation scheme, Fo(~,rl) 
can be expressed in the form 

Fo((,~7) = ~. S{~o}S{~A[- xz(1-E2)] 
k(O, ~ ) 

x g ( zgO[-  K2(1 - E2)]g(Zg2) 

x .. .  X[--K2(1--E2)]g(Zgk) (1) 

where zg~ is the distance of ith kink pairs along the G 
direction. Their distances along the O direction are 
denoted {Zoi}, which, however, are hidden in this 
expression. 

The notation S{Zo} is an integral operator of pos- 
sible {Zoo} under the geometrical constraint, 

- Zol + Zo2 + . . .  + Zo,k + 1. (2a) 

Similarly, S{zg} is an operator of possible {Zg~} under 

the constraint 

"l~ : Zg 1 "Jr Zg 2 " t - . . .  + Zg,k.  (2b) 
They can be written more explicitly as: 

S{zo} = ...  f S ( ~ -  ~',Zoi)dzoldzo2...dzo,~ + l, (3a) 
o o 

S{zg} = f . . . f ~ ( r l -  Zzgi)dZgldZgg...dzg,k. (3b) 
o o 

Here, we use the standard expression for the S 
function: 

c+ i~a 

6(x) = (2rri)- '  f exp (pxldp,  (4) 
c -  ioo 

in terms of the inverse Laplace transform, where c is 
any positive real number and is called the radius of 
convergence. 

If the integrations of (3a) and (3b) are applied to 
(1), one obtains the result: 

Fo((07) = (2rri)- 2 f f exp (ps c + q~7)dpdq 

x y,(1/p) k+ 1[_ x2(1 _E2)g(q)]~ 
k 

where g(q) is the Laplace transform of g(zgi), 
common for all i. The limits of integration are 
similar to those of (4), but are omitted for conve- 
nience. This convention is used frequently herein- 
after. 

The sum Y-k is just a geometrical series, so that we 
have 

Fo(~,r/) = ( 2 r r i ) - 2 f f  exp (p~: + qrl)dpdq 

x [p + (1 - E2)xgg(q)] - '  (5a) 

iI 

7 
F 

Y 
-< 11 > 

(a) 

7 
1 
Y 

(b) 

Fig. 2. The optical path and the intrinsic correlations (thick lines) 
in the special fields. (a) Fo(~,~), (b) F,,(~,~7). 
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This implies that the Laplace transform of Fo(~,W) is 

Fo(p,q) = [p + (1 - E2)x2g(q)] - '  (56) 

In the same manner, one can calculate the special 
field Fe((,9/). The result is 

Fe(sC,9/)=(2rri)-zf f exp (psC+ qg/)Fg(p,q)dpdq, (6a) 

where 

Fe(p,q) = [q + (1 - E2)x2g(p)] -1 (6b) 

Obviously, Fg(p,q) can be derived from Fo(p,q) and 
vice versa, simply by exchanging the variables p 
and q. 

4. The CWFs, (Do(so, S,)) and (De(so, Se) ) in general 
cases 

As explained in §2, the CWF can be constructed by 
taking an alternate product of Fo and F, and 
inserting the amplitude factor (ixeE) between Fo and 
F e and, also, the factor (ix_gE) between Fg and Fo. 
The wave field Do(so,Sg) is the total sum of such a 
product. Therefore, one obtains the expression 

Oo(so,Sg)= ~, S{~,n}Fo(~l,9/a)(iKgE)Fg(~2,9/2) 
Ao,=) 

x ( ir_gE) x . . .  × (iK_gE)Fo(~2f+ 1,r/2F+ 1), 

(7) 

where S{~,,7 ~ implies multiple integration with respect 
to possible variables of {sci,9/i} under the constraints 

So = s c] + so2 + ... + sc2f+ ], (8a) 

Sg = 9ll Jr- 9/2 - I t - . . .  "q'- 9/2f+ 1. (86) 

By using a similar technique to that used for 
obtaining (5), we have 

Do(so, S,) = (2~'i)-2f  f exp(pso + qsg)dpdq 

x ~ ' ( -  K2E2)S[Fo(p,q)Fe(p,q)]FFo(p,q) (9a) 
f 

= (2=i)-2ff exp (pSo + qse)dpdqFo(p,q) 

× [1 + x2E2Fo(p,q)Fe(p,q)] - l  (9b) 

The wave field De(so, Sg) can be written in a similar 
manner to (7). Necessary modifications are only to 
multiply the right-hand side of (7) by the factor 

(iKgE)Fe(~2f+ 2, nzf+ 2) 

and to add (2f+2 and 9/2f+2 to the constraints (8a) 
and (8b), respectively. Thus, we have 

De(so,S,) = (2rr / ) -2ff  exp (pSo + qse)dpdq 

x (iKeE)Fo(p,q)Fe(p,q) 
x [1 +(KE)2Fo(p,q)Fe(p,q)] -1. (10) 

In summary, the Laplace transforms of Do(so,Sg) 
and De(so,Se) are given in the forms 

Do(p,q) = Fo(p,q)D(p,q), (11 a) 

Dg(p,q) = (iKeE)Fo(p,q)Fe(p,q)D(p,q) 

= (iKgE)Fe(p,q)Do(p,q), (116) 

where 

D(p,q) = [1 + (KE)2Fo(p,q)Fg(p,q)] -1 (12) 

5. Relations between (Do(so, Sg)) and (Dg(so, Sg)) 
First, we consider relations amongst the Laplace 
transforms. For this purpose, we introduce the 
notation 

Do(p,q) = pDo(p,q), (13a) 

Og(p,q) = qDg(p,q), (136) 

which are the Laplace transforms of aDo(so, Sg)/aSo 
and aDg(so, Sg)/Os e, respectively, under the boundary 
conditions Do( - e,s e) = 0 and De(so, - e) = O. 

From the identity relation [cf. (56)], 

[p + (1 - E2)K2g(q)]Fo(p,q) = 1, 

it follows that 

pFo(p,q) = 1 - (1 - E2)x2g(q)Fo(p,q). 

Therefore, multiplying D(p,q) by this, we have the 
relation from (1 la): 

-Do(p,q)= O(p,q) -  (1 - E2)xEg(q)Fo(p,q)D(p,q). (14) 

On the other hand, it follows from (1 l b) that 

( iK_ gE)Dg(p,q) = - ( KE)2 Fo(p,q)Fg(p,q)D(p,q) 

= D(p,q) - 1. (15) 

Combining (14) and (15), we finally have 

-Do(p,q)= (iK_gE)Dg(p,q) - (1 - E2)K2g(q)Do(p,q) + 1. 
(16a) 

The same procedure can be used for obtaining the 
expression -De(p,q). We start with the identity [cf. 
(6b)] 

[q + (1 - E2)K2g(p)]Fg(p,q)= 1. 

After multiplication of (iKeE)FoD, this gives the 
relation 

D--g(p,q) = (iKgE)[1 -- (1 -- E2)KEg(p)Fg(p,q)] 

× Fo(p,q)D(p,q) 

= (iKgE)Do(p,q) - (1 - E2)K2g(p)Dg(p,q). 

(16b) 

The inverse Laplace transforms of (16a) and (16b) 
immediately give the following relations between 
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Do(so, Sg) and Dg(so, Sg): 

ODo(so, Sg)/OSo = (iK_gE)Dg(so, Sg) - (1 - E2)x 2 
sg 

x f Oo(so, Sg- zg)g(zg)dzg + (~(So)~(Sg) ,  
o 

(17a) 

ODg(so, Sg)/Osg = (iKgE)Oo(so, Sg) - (1 - EE)h -2 
So 

x f Dg(so - Zo, Sg)g(zo)dzo. (17b) 
0 

The integrals in the right-hand sides result from the 
convolution theorem of the Laplace transform. 

Because we are interested in the area of So > r and 
Sg> r for the fundamental relations of CWFs, the 
last term of (17a) can be dropped. In this sense, (17) 
is identical (10) of IIa. This is further discussed in §6. 

Until now, everything has been exact. Assuming a 
gentle variation of Do(so,Sg) and Dg(so,Sg) over the 
correlation length ~" of g(z), one can obtain 
straightforward but approximate formulae 

ODo(so Sg)/OSo = (iK_gE)Dg(so, Sg) 

- (1 - EE)xZrDo(so, Sg), (18a) 

ODo(so Sg)/Osg = (ixgE)Do(so, Sg) 

- (1 - E2)h2rDg(so, Sg). (18b) 

The approximations used here are equivalent to put- 
ting g(p) = g(q) = g(0) = r in (16a) and (16b). 

6. Discussion 

6.1. Applicability of  the present theory 

(a) Absorbing crystals. The present results for the 
Laplace transforms of CWFs [cf. (11) and (12)] and 
IDEs [cf (17) and (18)] may be used for absorbing 
crystals. As explained in Ia, the normal absorption is 
taken into account simply by multiplying the factor 

exp [ -  I~o(So + Sg)] 

by the intensities derived from CWFs, where /Zo is 
the linear absorption coefficient. 

The Borrmann absorption can be represented by 
introducing the imaginary part in the expression x 2 
[equation (Plb)]. Through the treatments of the 
Laplace transform, 

o o  

F(s) = f f ( t)  exp ( -  st)dt, 
0 

and the inverse transform, 
c+ ioo 

f ( t)  = (2rri)- '  f F(s) exp (st)ds, 
c - - i~  

only the variable t is assumed to be real - the 
variable s and the functions f ( t)  and F(s) are not 
necessarily real. Therefore, the present results need 
not be modified for absorbing crystals. 

(b) Asymmetric geometry. As in the spherical-wave 
theory for perfect crystals, the starting expression 
(P5) is valid for asymmetric cases, provided that the 
coordinate axes are taken along the O and G direc- 
tions. Also, the statistical quantities such as E [cf. 
(P3)] and g(z) [cf. (P4)] are independent of the 
absolute position at which the average is taken. 
Therefore, all arguments following §3 remain valid 
without any modification. 

(c) The spatial range over which (17) is applicable. 
The original equation (1) is correct as a solution of 
the T-T  equation. However, the averaged (17) must 
be understood as a nonlocal relation over a range 
where the average is meaningful; i.e. So,Sg-'- > r. It is 
too stringent to take the limitation So,Sg>>~" as 
assumed by Guigay & Chukhovskii (1992). 

6.2. The interpretation of(17) 

There is a difference between the IDE of Guigay & 
Chukhoskii (1992) (G&C) and the old formula pro- 
posed by the present author. Their equation [the first 
of (11)] includes iXg6(Sg) in the present notation but 
the old formula [(10a) in IIa] has no such term. On 
the other hand, (17a) of the present paper, which we 
shall call the new formula, includes 6(So)~3(Sg). These 
differences are a subtle problem depending on the 
interpretation of IDEs. 

Fundamental  relations like the IDEs considered 
here are used in two ways. One usage is to represent 
the relation among the wave fields, which must be 
free from the boundary condition, in particular the 
incident wave. The other is to represent a solution 
to the original equation, which is usually 
inhomogeneous because the boundary condition 
owing to the incident wave is included. The old 
formula corresponds to the former usage and the 
new formula corresponds to the latter. This situation 
is similar to the difference between the Schr6dinger 
equation, H ~ =  0, and the equation for the Green 
function, H G = 6(r), H being the same Hamiltonian. 
With this interpretation, both the new and the old 
formulae are correct, if one uses them legitimately. 
Obviously, when equation (10) of IIa is used, the 
proper boundary conditions such as equations (33a) 
and (34a) in IIa must be employed. 

For the same reason, the physical content of equa- 
tion (10) of G&C for God is no different from the old 
formula of the present author with the boundary 
conditions mentioned above. Although they stress 
the importance of the difference, the choice would be 
merely a matter of convenience. 

The following difference seems more serious. The 
t e rm iKg~(Sg) in equation (11) of G&C is hardly 
understood. It must be ~(So)6(Sg) as in the present 
new formula. Otherwise, their two-dimensional 
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Laplace transform [the unity on the right-hand side 
of the first equation of (14)] cannot be derived 
straightforwardly. Nevertheless, because their equa- 
tion (14) is correct for some reason, the author 
believes that the rest of their calculation is useful. In 
fact, their equation (15) is the same as the present 
result [(16a) and (16b)] if one replaces {r/(1 + rPo.h)} 
with the general expression g(Po.h) after putting Po = 
p and Ph = q. 
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Abstract 

The joint probability distribution method described 
in paper I [Giacovazzo, Burla & Cascarano (1992). 
Acta Cryst. A48, 901-906] and paper II [Burla, 
Cascarano & Giacovazzo (1992). Acta Cryst. A48, 
906-912] of this series has been considered in order 
to obtain a function that is maximized by the true 
crystal structure. The phasing process is carried out 
by maximizing such a function via a modified tan- 
gent refinement: this implies the active use of 
negative triplet and quartet relationships. The major 
effects provoked in a direct procedure by the use of 
numerous phase relationships with expected negative 
cosines are analysed. Practical applications are also 
described. 

Symbols and notation 

We adopt the symbols and notation used in papers I 
and II of the series (Giacovazzo, Burla & Cascarano, 
1992; Burla, Cascarano & Giacovazzo, 1992). 

Introduction 
In papers I and II, the conditional joint probability 
distribution of n phases given p (p___ n) moduli was 
studied. The calculations were performed in order to 
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allow for large values of n and p: i.e. n should be the 
number of strong reflections to be phased by a 
standard direct procedure and p may be the number 
of measured reflections. Two expressions were 
derived, both including triplet and quartet invariant 
contributions: the first formula [see equation (1) of 
paper II] may be considered as a development of 
Hauptman's mathematical approach, the second [see 
equation (2) of paper II] of Giacovazzo's approach. 
Both expressions were checked to assess their theo- 
retical soundness and practical usefulness for phase 
solution. The first one was found to present unac- 
ceptable features for a well behaved distribution 
(in agreement with some recent results obtained 
by Altomare, Burla, Cascarano, Giacovazzo & 
Guagliardi, 1993). The second distribution function, 
even though better designed, is not maximized by the 
correct set of phases (as one would expect for suffi- 
ciently large values of n and p). Accordingly, the 
combined use of triplet and quartet invariants in the 
tangent procedure proved to be of limited usefulness. 
This was ascribed to the limited accuracy of the 
probabilistic estimates of quartet invariants and, 
therefore, to some insufficiency in the mathematics 
used by Hauptman and by Giacovazzo. We show in 
this paper that a modified expression for the distribu- 
tion (2) of paper II is frequently maximized by the 
correct solution. As a practical consequence, the 
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